The polymath blog

June 9, 2019

A sort of Polymath on a famous MathOverflow problem

Filed under: polymath proposals — Gil Kalai @ 6:09 pm


Is there any polynomials {P} of two variables with rational coefficients, such that the map P: \mathbb Q \times \mathbb Q \to \mathbb Q  is a bijection?  This is a famous 9-years old open question on MathOverflow.  Terry Tao initiated a sort of polymath attempt to solve this problem conditioned on some conjectures from arithmetic algebraic geometry.  This project is based on an plan by Tao for a solution, similar to a 2009 result by Bjorn Poonen who showed that conditioned on the Bombieri-Lang conjecture, there is a polynomial so that the map P: \mathbb Q \to \mathbb Q \times \mathbb Q  is injective. (Poonen’s result  answered a question by Harvey Friedman from the late 20th century, and is related also to a question by Don Zagier.)

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at

%d bloggers like this: