The polymath blog

February 13, 2011

Can Bourgain’s argument be usefully modified?

Filed under: Improving Roth bounds — gowers @ 6:23 pm

I’ve been feeling slightly guilty over the last few days because I’ve been thinking privately about the problem of improving the Roth bounds. However, the kinds of things I was thinking about felt somehow easier to do on my own, and my plan was always to go public if I had any idea that was a recognisable advance on the problem.

I’m sorry to say that the converse is false: I am going public, but as far as I know I haven’t made any sort of advance. Nevertheless, my musings have thrown up some questions that other people might like to comment on or think about.

Two more quick remarks before I get on to any mathematics. The first is that I still think it is important to have as complete a record of our thought processes as is reasonable. So I typed mine into a file as I was having them, and the file is available here to anyone who might be interested. The rest of this post will be a sort of digest of the contents of that file. The second remark is that I am writing this as a post rather than a comment because it feels to me as though it is the beginning of a strand of discussion rather than the continuation of one, though it grows out of some of the comments made on the last post. Note that since we are operating on the Polymath blog, anybody else is free to write a post too (if you are likely to be one of the main contributors, haven’t got moderator status and want it, get in touch and I can organize it).

The starting point for this line of thought is that the main difficulty we face seems to be that Bourgain’s Bohr-sets approach to Roth is in a sense the obvious translation of Meshulam’s argument, but because we have to make a width sacrifice at each iteration it gives a (\log N)^{-1/2} type bound rather than a (\log N)^{-1} type bound. Sanders’s argument gives a (\log N)^{-1} type bound, but if we use that then it is no longer clear how to import the new ideas of Bateman and Katz. Therefore, peculiar as it might seem to jettison one of the two papers that made this project seem like a good one in the first place, it is surely worth thinking about whether the width sacrifice that Bourgain makes (and that is also made in subsequent refinements of Bourgain’s method, due to Bourgain and Sanders) is fundamentally necessary or merely hard to avoid. (more…)

Blog at