This thread marks the formal launch of “Finding primes” as the massively collaborative research project Polymath4, and now supersedes the proposal thread for this project as the official “research” thread for this project, which has now become rather lengthy. (Simultaneously with this research thread, we also have the discussion thread to oversee the research thread and to provide a forum for casual participants, and also the wiki page to store all the settled knowledge and accumulated insights gained from the project to date.) See also this list of general polymath rules.

The basic problem we are studying here can be stated in a number of equivalent forms:

Problem 1.(Finding primes) Find adeterministicalgorithm which, when given an integer k, isguaranteedto locate a prime of at least k digits in length in as quick a time as possible (ideally, in time polynomial in k, i.e. after steps).

Problem 2.(Finding primes, alternate version) Find adeterministicalgorithm which, after running for k steps, isguaranteedto locate as large a prime as possible (ideally, with a polynomial number of digits, i.e. at least digits for some .)

To make the problem easier, we will assume the existence of a *primality oracle*, which can test whether any given number is prime in O(1) time, as well as a *factoring oracle*, which will provide all the factors of a given number in O(1) time. (Note that the latter supersedes the former.) The primality oracle can be provided essentially for free, due to polynomial-time deterministic primality algorithms such as the AKS primality test; the factoring oracle is somewhat more expensive (there are deterministic factoring algorithms, such as the quadratic sieve, which are suspected to be subexponential in running time, but no polynomial-time algorithm is known), but seems to simplify the problem substantially.

The problem comes in at least three forms: a strong form, a weak form, and a very weak form.

- Strong form: Deterministically find a prime of at least k digits in poly(k) time.
- Weak form: Deterministically find a prime of at least k digits in time, or equivalently find a prime larger than in time O(k) for any fixed constant C.
- Very weak form: Deterministically find a prime of at least k digits in significantly less than time, or equivalently find a prime significantly larger than in time O(k).

The pr0blem in all of these forms remain open, even assuming a factoring oracle and strong number-theoretic hypotheses such as GRH. One of the main difficulties is that we are seeking a deterministic guarantee that the algorithm works in *all* cases, which is *very* different from a heuristic argument that the algorithm “should” work in “most” cases. (Note that there are already several efficient probabilistic or heuristic prime generation algorithms in the literature, e.g. this one, which already suffice for all practical purposes; the question here is purely theoretical.) In other words, rather than working in some sort of “average-case” environment where probabilistic heuristics are expected to be valid, one should instead imagine a “Murphy’s law” or “worst-case” scenario in which the primes are situated in a “maximally unfriendly” manner. The trick is to ensure that the algorithm remains efficient and successful even in the worst-case scenario.

Below the fold, we will give some partial results, and some promising avenues of attack to explore. Anyone is welcome to comment on these strategies, and to propose new ones. (If you want to participate in a more “casual” manner, you can ask questions on the discussion thread for this project.)

Also, if anything from the previous thread that you feel is relevant has been missed in the text below, please feel free to recall it in the comments to this thread.